ВЕТРОГЕНЕРАТОР СВОИМИ РУКАМИ


Содержание
  1. Ветрогенератор на заднем дворе
  2. Материалы и инструменты
  3. Вырезание лопастей турбины
  4. Прикрепление лопастей к генератору
  5. Сборка мачты
  6. Сборка электронных компонентов
  7. Преимущества и принцип работы ветряков
  8. Классификация вертикальных генераторов
  9. Особенности ортогональных систем
  10. Генераторы с ротором Дарье
  11. Агрегаты с ротором Савониуса
  12. Ветряк с многолопастным ротором и направляющей
  13. Характеристика приборов с геликоидным ротором
  14. Характеристика вертикально-осевых роторов
  15. Собственноручное изготовление ветряка
  16. Заготовка комплектующих и материалов
  17. Предварительная подготовка элементов
  18. Сборка всех деталей генератора
  19. Окончательный монтаж оборудования
  20. Выбор места для ветрогенератора
  21. Обслуживание вертикального прибора
  22. Оценка целесообразности установки
  23. Выводы и полезное видео по теме
  24. О самодельных ветряках для дома
  25. Технология сборки ветрогенератора
  26. Шаг #1. Винт ветряной электростанции
  27. Шаг #2. Изготовление мачты из трубы
  28. Шаг #3. Как сделать алюминиевый флюгер
  29. Шаг #4. Установка и подключение ветрогенератора
  30. Фото-пример сборки ветряка по шагам

Ветрогенератор на заднем дворе

Время на прочтение

Настоящий ветрогенератор — это слишком дорого в том случае, если его планируется использовать для решения простых домашних задач, не требующих большой мощности. Если всё, что нужно — это немного энергии для LED-освещения или для проекта, основанного на Raspberry Pi Zero, это как-то несоразмерно довольно серьёзным деньгам, которые придётся заплатить даже за небольшой ветряк. То же касается и школьных экспериментов, время и деньги, уходящие на организацию которых, обычно стараются свести к минимуму. Школы часто стеснены в средствах.

В этом материале мы расскажем о том, как создать собственный маленький ветрогенератор. Делать мы его будем из велосипедных запчастей и из того, что можно купить в строительном магазине. Стоимость проекта находится где-то в районе $80-150. На создание генератора уйдёт 8-16 часов. При ветре, который чуть сильнее «слабого ветра» по шкале Бофорта, наш генератор способен дать около 1 ватта мощности. Этого достаточно для того чтобы зарядить небольшую батарею, а значит, энергия у нас будет и в безветренную погоду.



Описываемая здесь маленькая ветряная турбина — это, по сути, экспериментальный проект, в ходе работы над которым можно освоить основы ветроэнергетики. Эту турбину нельзя назвать абсолютно надёжным источником энергии. Не стоит ждать от неё чудес! Кроме того, учитывайте, что сильный ветер опасен для нашей турбины. Эта машина не рассчитана на нормальную работу при таком ветре. Он её, скорее всего, разрушит. Поэтому турбину стоит убирать в плохую погоду. В частности, нужно учитывать то, что её обломки, носимые ветром, могут кого-нибудь поранить.

В отличие от типичных коммерческих турбин с горизонтальной осью вращения, оснащаемых тремя лопастями, закреплёнными на горизонтальном валу, в нашем проекте используется вертикальный вал ротора. Это избавляет нас от необходимости в механизме, учитывающем направление ветра, и сильно упрощает проект турбины. Наш генератор, в сущности, представляет собой велосипедное колесо, смонтированное на вертикальной стойке, которое связано с электрическим генератором. В роли лопастей ротора используются восемь «полутруб», вырезанных из дешёвых пластиковых (PVC) канализационных труб и прикреплённых к ободу колеса.

Турбина начинает вращаться при достижении ветром силы, примерно соответствующей 2 баллам (около 6 км/ч) по шкале Бофорта (смотрите таблицу ниже). Если сила ветра достигает 5 по шкале Бофорта (около 30 км/ч), турбина даёт около 1 ватта мощности (по нашим измерениям — 147 мАч при 6,7 В).

Шкала Бофорта (по материалам Википедии)

Шкала силы (скорости) ветра, используемая в наши дни, разработана в 18 веке британским моряком Сэром Френсисом Бофортом (1774 — 1857). Но его нельзя назвать первым, кто приложил усилия к созданию подобной шкалы. Шкале Бофорта предшествовали другие работы, в частности, характеризующие силу ветра по его воздействию на лопасти ветряных мельниц (инженер Джон Смитон, 1759). В том же направлении работал британский географ и гидрограф Александр Далримпл (1737 — 1808). Ещё более ранние шкалы силы ветра созданы астрономом Тихо Браге (1582), естествоиспытателем Робертом Гуком (1663) и Даниэлем Дефо (1704) — купцом, мятежником, шпионом и автором «Робинзона Крузо». В 1829 году Френсис Бофорт был назначен гидрографом Британского Адмиралтейства и передал свою шкалу всем, кому она могла понадобиться. С тех пор шкала Бофорта стала стандартным инструментом для измерения силы ветра.

Материалы и инструменты

Начнём работу над ветрогенератором. Мы будем пользоваться мачтой, сделанной из стальной водопроводной трубы, которая, возможно, будет закреплена в земле с помощью бетона. Принимая решение о высоте мачты и о способе её крепления стоит почитать местные законы. Возможно, в зависимости от условий эксплуатации генератора, мачту понадобится закрепить с использованием растяжек.

Вырезание лопастей турбины



Мы использовали тонкостенные канализационные PVC-трубы (Рис. A). В Германии, где я живу, такие трубы окрашены в оранжевый цвет, в Северной Америке такие трубы обычно белого цвета.



Мы, с использованием пилы, можем вырезать 4 лопасти из одной двухметровой трубы (Рис. B). Нам нужно 8 лопастей. Постарайтесь резать трубы точно по центру. В идеале все лопасти должны иметь одинаковый вес.

Прикрепление лопастей к генератору



В роли генератора мы используем велосипедное колесо (обод) с закреплённым в нём генератором (Рис. C). Лучше всего подходят колёса с алюминиевым ободом, так как их легче сверлить. Если вы взяли колесо от старого велосипеда — не забудьте снять с него шину, камеру и тормозные диски.



Прикрепите к колесу лопасти так, как показано на Рис. D, используя 2 винта, гайки и большие шайбы. Лопасти должны быть распределены по ободу равномерно (возможно, вам в этом поможет подсчёт количества спиц между лопастями) и выровнены по центру обода.

Сборка мачты



Мачту мы будем делать из оцинкованной стальной водопроводной трубы с резьбой на обоих концах. В торцевой заглушке (Рис. E) надо просверлить 9-миллиметровое отверстие и прикрутить колесо к заглушке, пропустив через это отверстие ось генератора с резьбой (Рис. F ниже). После того, как мачта будет надёжно закреплена (!), можно прикрутить к ней заглушку.



В деле надёжной установки мачты может пригодиться тройник, прикрученный к той части трубы, которая будет закреплена в земле и залита бетоном. Тройник позволит надёжно зафиксировать мачту в бетоне. При этом вес бетона должен быть достаточно большим для того чтобы поддерживать и фиксировать мачту. Вся конструкция должна быть надёжно закреплена. В результате, если ожидается буря, можно просто открутить нижнюю часть мачты от бетонного основания и убрать турбину в безопасное место.

Не стоит недооценивать силу, с которой ветер воздействует на окружающие предметы. Эта сила возрастает пропорционально кубу (третьей степени) скорости ветра! Поэтому, если нужно, зафиксируйте мачту с помощью растяжек.

Сборка электронных компонентов



Наша ветроэлектростанция рассчитана на зарядку свинцово-кислотного аккумулятора с помощью тока, генерируемого динамо-машиной. Используемый нами электрогенератор вырабатывает переменный ток, который мы преобразуем в импульсный постоянный ток, используя мостовой выпрямитель. Этот ток, для его сглаживания, передаётся на два электролитических конденсатора ёмкостью 2200 мкф.

Сглаженный постоянный ток затем подаётся на повышающе-понижающий преобразователь (на eBay он стоит примерно $10), который используется в роли регулятора зарядки аккумулятора. Он преобразует входное напряжение, находящееся в диапазоне от 1,25 до 30 В, в заданное постоянное напряжение. Мы установим выход конвертера на 0,7 вольта выше конечного напряжения заряда аккумулятора (для компенсации прямого напряжения диода). Диод 1N4007 нужен для того чтобы предотвратить обратный ход тока от аккумулятора к конвертеру.

Например, 6-вольтовый свинцово-кислотный аккумулятор имеет напряжение зарядки 7,2 В. Учитывая необходимость добавления прямого напряжения диода, которое равняется 0,7 В, конвертер нужно установить на выходное напряжение в 7,9 В.

Электрическая нагрузка (это может быть что угодно, например — светодиод) будет подключена к выходам аккумулятора. Учитывайте то, что эта нагрузка должна поддерживать выходное напряжение, установленное на конвертере. Сам генератор может быть способен дать лишь небольшой ток, а батарея может выдать несколько ампер. Последствия короткого замыкания могут быть весьма печальными (может случиться пожар). Для того чтобы предотвратить несчастные случаи, нужно, независимо от того, что именно вы подключаете к ветрогенератору, принимать соответствующие меры безопасности.

После того, как электронные компоненты генератора собраны, всё готово к тому, чтобы превратить силу ветра в электроэнергию! Теперь перед вами раскрываются возможности владельца ветрогенератора.

Наш генератор, правда, это всего лишь экспериментальное устройство, недорогая практическая демонстрация принципов работы ветряных турбин, которая может найти применение, например, в школах. Эта турбина не рассчитана на работу при сильном ветре. Когда турбина не используется, или если сила ветра превышает 6 по шкале Бофорта, всю конструкцию нужно разобрать и куда-нибудь спрятать.

Велосипедное колесо и лопасти из труб не рассчитаны на постоянное использование, в особенности — при сильном ветре. Вы можете сами усилить конструкцию в том случае, если хотите, чтобы ветрогенератор работал бы на постоянной основе. ( Правда, надо сказать, что моя конструкция оказалась прочнее, чем я ожидал. Я оставил её в саду и она работала там при любой погоде — до тех пор, пока не вышла из строя одна из растяжек. Тогда мачта рухнула и сломалась одна из лопастей турбины.)

Если вас интересует тема ветрогенераторов — можете взглянуть на этот материал и посмотреть это видео. Загляните на этот сайт, посвящённый генератору Chispito. Вот и вот — ещё пара полезных ресурсов.

А вы хотите построить собственный ветрогенератор?



Страница 1 из 127

Ветер обладает неимоверными энергетическими возможностями. Неиспользование его мощного потенциала надо смело признать неразумным расточительством. А ведь можно запросто соорудить вертикальный ветрогенератор своими руками и получать фактически бесплатную энергию для покрытия бытовых нужд. Это же вполне реально, согласны?

Представленная статья поможет детально разобраться в сложном техническом вопросе. Систематизированная, доступно изложенная информация в мельчайших подробностях освещает принцип действия популярных систем, перерабатывающих энергию воздушных масс в электричество.

Вне сомнений, вы увлечетесь идеей создания ветряка, специфика сборки которого описана в статье. Мы подробно рассмотрели разные виды вертикальных ветрогенераторов, затронули их различия, преимущества и недостатками. Текстовую часть материала отлично дополняют фото и видео-инструкции.

Преимущества и принцип работы ветряков

Современный вертикальный генератор — один из вариантов альтернативной энергии для дома. Агрегат способен преобразовать порывы ветра в энергетический ресурс. Для корректной работы он не нуждается в дополнительных устройствах, определяющих направление ветра.



Ветряной генератор роторного типа очень легко изготовить своими руками. Конечно, полностью взять на себя обеспечение частного крупногабаритного коттеджа энергией он не сможет, но с освещением хозяйственных построек, садовых дорожек и придомовой территории справится на отлично

Прибор вертикального типа функционирует на низкой высоте. Для его обслуживания не нужны различные приспособления, обеспечивающие безопасное проведение высотных ремонтных и обслуживающих работ.

Минимум движущихся деталей делает ветряную установку более надежной и эксплуатационно устойчивой. Оптимальный профиль лопастей и оригинальной формы ротор обеспечивают агрегату высокий уровень КПД независимо от того, в каком направлении дует ветер в каждый отдельный момент.



Малые бытовые модели состоят из трех и более легких лопастей, моментально улавливают самый слабый порыв и начинают вращаться, как только сила ветра превышает 1,5 м/с. Благодаря этой способности их эффективность часто превышает КПД крупных установок, нуждающихся в более сильном ветре

Генератор работает абсолютно бесшумно, не мешает хозяевам и соседям, не создает вредных выбросов в атмосферу и надежно служит в течение многих лет, аккуратно поставляя энергию в жилые помещения.

Вертикальный генератор ветрового типа работает по принципу магнитной левитации. В процессе вращения турбин образуются импульсная и подъемная силы, а также сила фактического торможения. Первые две заставляют крутиться лопасти агрегата. Это действие активирует ротор и он создает магнитное поле, вырабатывающее электричество.



Ветряк, имеющий вертикальную ось вращения, по эффективности не уступает своим горизонтальным аналогам. К тому же не предъявляет претензий к территориальному расположению и полноценно работает практически в любом удобном для домовладельцев месте

Прибор функционирует полностью самостоятельно и не требует вмешательства хозяев в процесс.

Классификация вертикальных генераторов

Между ветроулавливающими устройствами вертикального типа есть некоторая конструкционная разница. Она не делает агрегаты лучше или хуже, а просто позволяет подобрать самый удобный вариант для выполнения конкретных задач в определенной местности.

Особенности ортогональных систем

Конструкционно ортогональный ветряной генератор состоит из прочной оси вертикального вращения и нескольких параллельных лопастей, удаленных от центровой основы на определенное расстояние.

Прибор не нуждается в дополнительных направляющих механизмах и нормально работает, независимо от направления ветра. Вертикально расположенный главный вал дает возможность размещать приводное оборудование на уровне земли, что существенно облегчает эксплуатацию, ремонт и техническое обслуживание.



Опорные узлы ортогонального генератора имеют не очень высокий срок службы. Это обусловлено высокими динамическими нагрузками, которые на них оказывает в процессе работы ротор. Чтобы установка не вышла из строя раньше времени, все опорные части необходимо регулярно осматривать и своевременно менять поврежденные на новые

К минусам ортогональных приборов относятся слишком массивная лопастная система и низкая эффективность по сравнению с КПД горизонтально-осевых модулей.

Простейшую ветровую турбину для питания маломощных потребителей можно собрать из готовых комплектующих:

Фото из

Комплект для сборки ветряка

Сборка лопастей мини ветрогенератора

Подключение генератора к рабочей части

Частота оборотов в минуту

Генераторы с ротором Дарье

Ветряной генератор, оснащенный ротором Дарье, имеет вертикальную ось вращения и 2-3 плоские полосы-лопасти без характерного аэродинамического профиля, закрепленные у основания и на верхушке оси вращения.

Агрегат в своей работе не ориентируется на силу или направление ветра, имеет высокую скорость вращения и допускает расположение приводных устройств на земле, что облегчает и ускоряет процесс планового обслуживания и возможного ремонта.



Двухлопастные генераторные установки с ротором Дарье активируются только сильным порывом ветра. При равномерно набегающем потоке запуститься самостоятельно они не могут

Опорные и вращающиеся узлы прибора с ротором Дарье уязвимы к повышенным динамическим нагрузкам, а эффективность лопастной системы по многим параметрам уступает осевым горизонтальным установкам.

Агрегаты с ротором Савониуса

Вертикальный ветряной прибор с ротором Савониуса имеет полуцилиндрическую лопастную систему и от аналогичных установок отличается высоким пусковым крутящим моментом и способностью эффективно работать при низкоскоростных ветрах.



Мощность предлагаемых на рынке вертикальных ветрогенераторов с ротором Савониуса не превышает 5 кВт. Приборы редко используют как самостоятельную рабочую единицу, а чаще всего применяют для создания более высокого пускового момента для роторных установок Дарье

В упрек вертикальному комплексу с ротором Савониуса ставят повышенную материалоемкость и более низкий КПД по сравнению с ветрогенераторами горизонтальноосевого типа. Именно поэтому выпуск высокомощного оборудования такого класса считают не целесообразным.

С шагами изготовления ветряка Савониуса ознакомит следующая фото-подборка:

Основание самодельного ветрогенератора собираем из трех фанерных дисков: верхний и нижний диаметром по 30 см, средний диаметром 26 см

Из листа алюминия толщиной 1 мм ножницами по металлу вырезаем лопасти. Для их изготовления нужно заранее сделать шаблон из картона

Последовательно фиксируем лопасти к фанерному основанию и расположенной в центре деревянной оси шурупами длиной 2 см

Для того чтобы обеспечить ветряку опорную базу, делаем тумбу из фанеры или МДФ. В плите толщиной 1,8 см вырезаем отверстие, в которое будет заведен диск диаметром 32 см

Для сборки опорной тумбы сооружаем стенки высотой до 15 см. Примерные габариты ее 41,5 см х 34,0 см

Для фиксации генератора устроим бокс размером 67х70х68 мм и изолируем его экструдированным полистиролом, чтобы во время работы он не нагревал элементы деревянного корпуса

Для того чтобы предотвратить неравномерное воздействие ветра на вертикальную турбину, вырезаем из алюминия дефлектор высотой 26 см

К выходу генератора подключаем провода, требующиеся для подсоединения его к потребителям постоянного тока напрямую, а к потребителям переменного тока или АКБ через инвертор

Шаг 1: Сборка основания ветряка

Шаг 2: Раскрой лопастей из алюминия

Шаг 3: Крепление лопастей к основанию

Шаг 4: Подготовка верхней детали тумбы

Шаг 5: Изготовление стенок опорной тумбы

Шаг 6: Установка генератора в боксе

Шаг 7: Устройство дефлектора для турбины

Шаг 8: Финишная сборка вертикального ветряка

Все детали этой модели ветряка Савониуса кроме генератора на 3200 об/мин и 24 В сделаны вручную.

Ветряк с многолопастным ротором и направляющей

Этот вид прибора – усовершенствованная версия классического ортогонального ветрогенератора. Роторный комплекс здесь состоит из лопастей, расположенных в два ряда.

Внешний лопастной ярус остается статичным и работает как направляющий аппарат. Он улавливает ветряной поток, захватывает его, сжимает и таким способом заметно увеличивает фактическую скорость ветра.

Внутренний ряд лопастей представляет собой подвижную структуру, на которую под определенным углом попадает воздухопоток от первой роторной установки.



КПД ветряного генератора, имеющего многолопастный ротор с направляющей системой, делает этот прибор особенно привлекательными для потребителей. Однако, стоимость такого оборудования довольно высока, и оно окупается несколько дольше, нежели аналогичные устройства более простой конфигурации

Специалисты называют этот тип прибора максимально эффективным в своем классе и подчеркивают, что специфическая конструкция позволяет ему работать даже при максимально низких скоростях ветра.

Характеристика приборов с геликоидным ротором

Геликоидная ветряная установка или генератор Горлова – еще одна модификация традиционной ортогональной роторной системы. Лопасти модели закручены по дуге. Эта конструкционная особенность дает возможность быстро улавливать поток воздуха и плавно вращаться без рывков.

Такой принцип работы существенно снижает динамическую нагрузку на основание и подвижные узлы, тем самым увеличивая срок их службы.



Аппараты с ротором геликоидного типа очень надежны и легко выдерживают значительные эксплуатационные нагрузки. Однако во время работы такие ветряки создают выраженные шумовые эффекты и производят дополнительные звуковые волны, находящиеся в коротковолновой области звукового спектра

Закрученные роторные лопасти для геликоидного ветряка делают по очень прогрессивной, но сложной технологии. Из-за этого агрегаты имеют достаточно высокую стоимость и не пользуются широкой популярностью у частных потребителей.

Характеристика вертикально-осевых роторов

Главное отличие вертикально-осевого генератора – это вертикально расположенные лопасти, по профилю напоминающие авиационное крыло, чья ось четко параллельна вертикальному валу. Конструкция чем-то напоминает ротор Дарье, но в производственных условиях изготовляется значительно быстрее и проще.



Генератор с вертикально-осевым ротором гораздо быстрее, чем аналогичные приборы этого класса, набирает рабочую скорость и начинает выдавать требуемый энергоресурс. Процесс сопровождается небольшим звуковым эффектом и не мешает ни владельцам установки, ни соседям

Ветряки с ротором вертикально-осевого типа отличаются надежностью и долговечностью, легко выдерживают значительные эксплуатационные нагрузки и не стоят слишком больших денег. Эти качества делают их актуальными для использования не только в промышленных, но и в бытовых целях.

Особенности выбора ветрогенераторов для частного дома и обзор лучших предложений представлены в этой статье.

Собственноручное изготовление ветряка

Создать ветрогенератор с вертикальной осью вращения в домашних условиях своими руками не слишком сложно. Достаточно приобрести обязательные составляющие детали, собрать их в правильном порядке и установить модуль на выбранное место. Как только появится минимальный ветерок, изделие заработает и начнет давать владельцам необходимую энергию.

Заготовка комплектующих и материалов

Для изготовление ветряного вертикального генератора своими руками понадобятся такие комплектующие:

Для изготовления лопастей подойдет легкий качественный листовой пластик с хорошим показателем упругости. Другие виды материалов слишком подвержены различным повреждениям и деформации и просто не справятся со столь высокой динамической нагрузкой.



Изготавливая прибор самостоятельно, следует помнить, что вертикальные ветряки, сделанные своими руками, серьезно уступают в мощности заводским образцам. Поэтому, чтобы в будущем не разочароваться в созданной конструкции, лучше сразу сделать ее по параметрам, в 2 раза превышающим необходимые

Маленькие лопасти можно сделать из ПВХ средней плотности, а для больших, широких деталей потребуется максимально прочный материал, способный выдержать сильный ветер, дующий со скоростью 15 м/с и выше в течение длительного времени.

Предварительная подготовка элементов

Для создания лопастей вертикального ветрогенератора из трубы ПВХ высокой прочности вырезают 4 одинаковых детали. Два полукруглых фрагмента выкраивают из жести и крепят с каждой стороны трубы. Радиус вращения лопастных частей в этом случае составит 690 мм, а высота каждой лопасти будет около 700 мм.

Для сборки роторной системы берут неодимовые магниты (6 шт), ферритовые диски диаметром 230 мм (2 шт) и клей. На первом диске размещают магниты, чередуя по полярности и соблюдая между ними угол в 60 градусов при диаметре расположения 165 мм. По такой же схеме делают второй диск, а потом заливают магниты клеем.

Для статора готовят 9 катушек и наматывают на каждую из них по 60 витков медного провода диаметром в 1 мм.

Последующая спайка происходит в таком порядке:

Вторую фазу собирают по этому же принципу, но начинают работу со 2 катушки, а третью – с 3 катушкой. Из листа фанеры делают специальную форму, дно выстилают отрезом стекловолокна и поверх размещают спаянные из катушек фазы.

Заливают конструкцию клеем и оставляют на 1-2 суток, чтобы все детали схватились и заняли нужные места. Потом приступают к соединению отдельных частей в единую рабочую систему.

Сборка всех деталей генератора

Для соединения всех элементов генератора в верхнем роторе проделывают 4 отверстия для шпилек. На кронштейн магнитами вверх кладут нижний ротор. Дальше размещают статор, предварительно проделав в нем отверстия для крепления к кронштейну.

В алюминиевую пластину упирают шпильки и затем накрывают вторым ротором, располагая его магнитами вниз.

Процесс сборки деталей проводят внимательно и без спешки. Роторы обязательно выравнивают относительно друг друга, чтобы потом в конструкции не образовывался люфт (+)

Шпильки с помощью гаечного ключа поочередно вращают, чтобы верхний ротор опускался на нижний равномерно и без рывков. Когда он займет положенное место, шпильки выкручивают и убирают алюминиевые пластины. В конце всю конструкцию фиксируют гайками и затягивают их четко, но не слишком жестко, чтобы не сорвать резьбу.

Окончательный монтаж оборудования

Для мачты берут прочную металлическую трубу длиной 4-5 метров и прикручивают к ней уже собранный своими руками генератор. Затем присоединяют каркас с пластиковыми лопастями к генератору и устанавливают мачтовую конструкцию на подготовленную заранее площадку с трехточечным армированным фундаментом.

Дополнительно положение системы фиксируют при помощи растяжки.

При осуществлении монтажа ветряной установки мачту нужно брать как можно длиннее. Она обязательно должна выносить ротор выше самого высокого строения на участке. Только тогда конструкция сможет эффективно работать и выдавать необходимое количество ресурса

Электрическую сеть к ветряку подключают в определенной последовательности. Контроллер принимает ресурс от генератора и преобразует переменный ток в постоянный, необходимый для заряда батареи. Можно собрать контроллер собственноручно по упрощенной схеме.

Аккумулятор накапливает выделенную энергию, а инвертор превращает постоянный ток в переменный, который питает основную массу бытовых приборов и домашних обслуживающих систем.

На нашем сайте есть подборка статей о самодельном изготовлении ветрогенераторов разного типа.

Еще один интересный вариант сооружения вертикального ветряка собрать можно из бросовых материалов, потратив на приобретение дополнительных комплектующих не более 250 руб. Самостоятельным мастерам потребуется велосипедное колесо, еще 12 велосипедных спиц, ось от заднего велосипедного колеса с тремя гайками, стальная полоса, 11 пластин из алюминия.

Еще понадобится 150 заклепок, болты М4 с гайками в количестве 18 штук, болты М6 с гайками в количестве 3 штуки, 27 больший шайб и 24 маленьких.

Вкратце этапы сборки продемонстрирует следующая галерея:

Закрепив шаблон основания вертикальной лопасти на алюминиевой пластине, вырезаем 6 деталей. Необязательно четко соблюдать абрис, допустимы небольшие отклонения. После чего все заготовки надо сложить стопой и просверлить в них 16 отверстий для крепления, используя сверло 4 мм

Сделаем на металлических листах прорези, отступив от края 4, 6, 8, 10, 18, 26 и 34 см, а затем через каждые 2 см до 64 см. Загнув края, собираем их в единую конструкцию, прикрепив верхнее и нижнее основание

Из алюминия вырезаем 3 заготовки для устройства полых стержней. Они обеспечат жесткость, а полость позволит свободно закрепить детали шурупами

Соорудив три лопасти-турбины, закрепляем их нижним основанием на колесе. Вверху соединяем сваренным из уголка треугольником

Жестко крепим все три турбины лопасти к оси, обеспечив при этом неподвижное относительно вращающейся системы положение

Установленный на отдельную стойку генератор постоянного тока соединяем ременной передачей с колесом. Двигатель можно использовать другой, но метод подключения будет аналогичным

Мачту с ветрогенератором устанавливаем в выбранном заранее месте. Рядом не должно быть объектов, создающих помехи воздействию ветра. Баланс обеспечиваем растяжками

Используя те же компоненты и детали, можно собрать более сложную, но и гораздо более производительную установку, способную обеспечить электроэнергией загородное хозяйство

Этап 1: Раскрой основания для вертикальной турбины

Этап 2: Сборка компонентов на основании

Этап 3: Изготовление усиливающих стержней

Этап 4: Фиксация лопастей на колесе

Этап 5: Обеспечение жесткости конструкции

Этап 6: Установка и подключения генератора

Этап 7: Установка мачты с ветрогенератором

Этап 8: сооружение более сложной установки

Подробно все шаги представит следующий видео-инструктаж:

Выбор места для ветрогенератора

Правильный выбор места для установки ветрогенератора – важный этап. Лучше всего разместить прибор на открытой максимально высокой точке и тщательно проследить, чтобы он не оказался ниже уровня прилегающих жилых и хозяйственных построек. Иначе здания станут препятствием для потока воздуха и КПД агрегата очень снизится.

Если участок выходит к реке или озеру, ветряк размещают на берегу, где ветры дуют особенно часто. Прекрасно подходят для расположения генератора возвышенности, имеющиеся на территории, или большие пустые пространства, на которых нет искусственных или естественных преград для воздухопотока.

Когда жилая недвижимость (дом, коттедж, квартира и пр.) находится в черте города или располагается за городом, но в местах плотной застройки, ветряной энергетический комплекс ставят на кровле.

Для размещения генератора на крыше многоквартирного дома берут письменное согласие соседей и получают официальное разрешение из соответствующих инстанций.

Устанавливая вертикальный генератор на крыше многоквартирного дома, следует помнить, что агрегат работает довольно шумно и может причинить неудобства как хозяевам, так и остальным проживающим. Поэтому размещать прибор нужно ближе к центру кровли, чтобы владельцы квартир на верхних этажах не страдали от громкого гула, издаваемого ветряком в процессе работы

В частном доме, имеющем большой приусадебный участок, выбрать подходящее место гораздо проще. Главное, учесть, чтобы конструкция находилась на расстоянии 15-25 метров от жилых помещений. Тогда звуковые эффекты от вращающихся лопастей никого не побеспокоят.

Обслуживание вертикального прибора

Чтобы ветряной вертикальный генератор работал качественно, четко и максимально эффективно, все движущиеся части конструкции обязательно смазывают. Такую процедуру проводят не реже 2 раз за весь календарный год.

Параллельно во время обслуживания подкручивают разболтавшиеся в результате эксплуатации гайки, укрепляют электрические соединения, проверяют механические узлы на наличие коррозийных проявлений, подтягивают ослабшие растяжечные тросы и внимательно осматривают лопасти на предмет разрыва или повреждения.

Зимой за вертикальными установками нужен особый уход. В период морозов лопасти покрываются коркой льда и ее необходимо своевременно очищать, чтобы скорость крутящего момента сохранялась на должном уровне

Покраску деталей производят по мере надобности и 1 раз в год совершают полное обследование всей конструкции на предмет выявления неисправностей. Такой уход обеспечивает корректную работу ветряной установки и продлевает ее эксплуатационный период.

Оценка целесообразности установки

Прежде чем приступать к изготовлению ветряного генератора вертикального типа, изучают метеоситуацию в своем регионе и стараются определить, сможет ли агрегат обеспечить необходимое количество ресурса.

Специалисты рекомендуют оценить следующие параметры:

Первый показатель узнают из данных, полученных на ближайшей метеостанции или найденных в интернете на соответствующих порталах. Дополнительно сверяются с печатными географическими изданиями и составляют полную картину о ситуации с ветром в своем регионе.

Статистику берут не за один год, а за 15-20 лет, только тогда средние цифры будут максимально корректными и покажут, сможет ли генератор полностью удовлетворить потребность домовладения в электроэнергии или его сил хватит только на питание отдельных бытовых нужд.

Если в распоряжении владельца большой участок земли, расположенный на склоне, у берега реки или на открытом пространстве, с установкой не будет проблем.

Когда же дом находится в глубине населенного пункта, а двор отличается компактными габаритами и вплотную прилегает к соседским постройкам, установить вертикальную модель ветряка своими руками будет непросто. Конструкцию придется поднимать на 3-5 м над землей и дополнительно укреплять, чтобы при сильном порыве она не упала.

Учесть всю эту информацию нужно на этапе планирования, чтобы стало понятно, сможет ли ветряной генератор взять на себя полное энергообеспечение или его роль останется в рамках вспомогательного источника энергии. Предварительно желательно провести расчет ветряка.

Выводы и полезное видео по теме

Видео №1 продемонстрирует, как сделать своими руками в домашних условиях вертикальный генератор ветряного типа с роторной системой Дарье. В ролике наглядно представлены особенности и любопытные нюансы процесса сборки. Есть определение максимальной мощности изготовленного агрегата:

Как работает вертикальный ветряной генератор и в каком объеме он выдает энергоресурс, покажет видео №2. В нем дан подробный обзор модуля и описание работы по корректному проведению замеров фактической мощности и прочих параметров:

В видео № 3 представлено тестирование самодельного ветряного генератора вертикального типа. На что способен прибор, изготовленный своими руками из подручных материалов:

Такой современный и практичный источник альтернативной энергии, как вертикальные ветряки несложно собрать своими руками. При надлежащем опыте хозяйственных работ можно изготовить каждую деталь, а потом соединить все компоненты в единую, целостную конструкцию.

Если усложнять задачу не хочется, вполне уместно приобрести уже готовые компоненты и в домашних условиях, без спешки и суеты, смонтировать надежный ветряной агрегат, способный обеспечить бесперебойные поставки электричества в жилое помещение.

Когда же в своих силах нет стопроцентной уверенности, лучше поручить работу профессионалам. Они сделают все очень быстро и в полном соответствии с базовыми эксплуатационными требованиями.

Ветряки — перспективная альтернатива для традиционной энергетики. Энергия ветра, преобразованная в электричество, обещает стать дешёвой, просто добываемой и малозатратной. А если брать во внимание счета, которые приходят сейчас за электричество, то в целях экономии стоит попытаться собрать собственный ветрогенератор, согласны?

Есть реальные примеры создания установок, вырабатывающих приличный объем энергии. Тем не менее возможности ветряков пока существенно опережают конкурентов, способных противостоять традиционному способу добычи электричества.

Мы представили руководство, следуя которому вы сможете собрать ветрогенератор из автомобильного генератора своими руками. В предложенной к ознакомлению статье подробно разобраны распространенные ошибки, которые допускают при конструировании ветряков. Для наглядности статья сопровождается тематическими фото- и видеоматериалами.

О самодельных ветряках для дома

Особый интерес к ветряной энергии проявляется на уровне бытовой сферы. Это понятно, если краем глаза взглянуть на очередной счёт за потреблённую энергию. Поэтому разного рода умельцы активизируются, используя все возможности получения электричества недорого.

Одна из таких возможностей, вполне реальная, тесно связана с ветряком из автомобильного генератора. Уже готовый прибор – автомобильный генератор – достаточно лишь оснастить правильно сделанными лопастями, чтобы иметь возможность снимать с клемм генератора какое-то значение электрической энергии.

Правда эффективно работать он будет лишь при условии наличия ветреной погоды.



Пример из практики бытового применения ветряных генераторов. Удачно разработанная и вполне эффективная практическая конструкция ветряка. Установлен трёхлопастной винт, что редкость для бытовых аппаратов

Использование фактически любого автомобильного генератора приемлемо для конструирования ветряка. Но подобрать для дела обычно стараются модель мощную, способную выдавать большие токи. Здесь на пике популярности конструкции генераторов от грузовых автомобилей, крупных пассажирских автобусов, тракторов и т.п.

Помимо генератора для изготовления ветряка потребуется ещё ряд комплектующих деталей:

Конструкция винта на две или три лопасти считается наиболее оптимальной для классического ветряного генератора. Но бытовой проект зачастую далёк от инженерной классики. Поэтому чаще всего на домашнюю конструкцию стараются подобрать уже готовые винты.



Крыльчатка от вентилятора легкового автомобиля, которая будет использована в качестве винта ветряной домашней установки. Лёгкость и большая полезная площадь для воздушной силы позволяют применять такие варианты

Таким, к примеру, может стать крыльчатка от внешнего блока сплит-системы кондиционирования воздуха или от вентилятора того же автомобиля. Но когда есть желание следовать традициям конструирования ветрогенераторов, придётся сооружать пропеллер ветряка от начала до конца своими руками.

Перед принятием решения о сборке и установке ветрогенератора стоит оценить климатические данные участка и рассчитать окупаемость. Существенную помощь в этом окажет информация весьма интересной статьи, рекомендуемой нами к ознакомлению.

Технология сборки ветрогенератора

Оптимальной основой для генератора домашнего ветряка видится модель АТ-700, взятая от трактора серии ДТ. Правда этот тракторный генератор в его изначальном виде рассчитан на частоту вращения ротора до 6000 об/мин. Под конструкцию домашнего ветряка такой параметр явно чрезмерный.

Есть два выхода из положения:

В принципе, оба варианта модернизации прибора достижимы. Но, судя по отзывам состоявшихся конструкторов, вариант с перемоткой обмотки статора более приемлем. Тем более если учитывать вес самого генератора АТ-700, достигающий 6 кг.



Тракторный генератор АТ-700. Многочисленные проекты в бытовой сфере разрабатывались на базе именно этого устройства, обладающего высокой отдачей по току. Но требуется небольшая модернизация

Если прибор дополнить редуктором, вес общего модуля увеличится вдвое. А это важный параметр для конструкции ветряка. Вес всегда стремятся уменьшить.

При использовании в конструкции ветряка генератора К 701 потребуется некоторая модернизация:

Разборка автогенератора для переделки

Переделка соединений автогенератора

Установка магнитов в выступы ротора

Ротор и статор подготовлены к установке

Перемотка катушки статора по мере необходимости

Подготовка к соединению деталей

Сборка усовершенствованного генератора

Тестирование доработанного генератора

Шаг #1. Винт ветряной электростанции

Материалом для изготовления лопастей винта служит поливная алюминиевая труба (d = 200 мм) длиной 0,7 – 1,0 м. Изначально её разрезают вдоль на четыре отрезка, а затем из двух или трёх полученных частей вырезают лопасти требуемой формы.

Так как алюминий – материал, хорошо поддающийся обработке, вырезать из куска трубы нужную форму лопасти не проблема. Главное – правильно рассчитать и нарисовать шаблон.

Изготовленные лопасти будущего винта необходимо как-то скрепить и насадить на вал генератора. Эта работа более сложная, требует точного баланса и особенно при выполнении трехлопастной конструкции. Есть масса вариантов изготовления диска винта. Один из них – создание этой детали из алюминиевых пластин.

Потребуется рассчитать диаметр диска винта с учётом метровой длины лопастей. Для размаха крыла в 2 метра, расчётный диаметр диска может составлять 150-200 мм. На основании рассчитанного диаметра из листового алюминия вырезается необходимое количество круглых пластин (6-7 шт.).



Пример изготовления винта ветряного генератора из двухсотмиллиметровой алюминиевой трубы, применяемой на сельскохозяйственных полях для полива урожая. Получается лёгкая и эффективная конструкция

Вырезанные круглые пластины накладывают друг на друга, выравнивают по кромкам и скрепляют. Для скрепления лучше всего использовать качественный эпоксидный клей. Но не исключены также иные методы крепежа.

На готовом склеенном диске необходимо в центральной точке разметить и просверлить отверстие под крепление на валу генератора. Отверстие доработать шпоночным пазом под размер шпонки, установленной на валу ротора генератора.

Приготовленный таким способом пропеллерный диск размечают под крепление лопастей. По намеченным линиям сверлят отверстия для болтов крепления кронштейнов. Эти детали тоже делаются алюминиевыми с подбором по толщине, достаточной для компенсации передаваемых усилий.

Останется приложить изготовленные ранее лопасти к диску в намеченных точках соединения, сбалансировать их на ровной поверхности и закрепить болтами.

Шаг #2. Изготовление мачты из трубы

Тракторный генератор АТ-700, оснащённый самодельным винтом, уже представляет собой реальный ветряк. С целью получения максимального эффекта от конструкции, её желательно поднять метров на 5-7 и к тому же обеспечить круговое перемещение на 360°.

Поэтому флюгер-ветряк ставят на мачту, которую проще всего изготовить на базе металлической трубы.



Установленная мачта из металлической трубы диаметром 50 мм с ветряным генератором наверху. Для обеспечения устойчивости мачты применяются растяжки из металлического троса

Мачта высотой 5-7 метров, оснащённая наверху ветрогенератором, будет испытывать значительные нагрузки. Соответственно диаметр металлической трубы нужен достаточно большой — не менее 50 мм по наружному размеру.

Крепление мачты выполняется за счёт четырёх тросовых растяжек, закреплённых сверху ближе к ветряку и растянутых в противовес друг другу.

Под верхний обрез трубы-мачты, во внутреннюю область, запрессовывается пара подходящих подшипников или крепится каким-то иным способом. Это будет опорный крутящийся блок, куда встанет флюгер с генератором и винтом. Остаётся сделать сам флюгер и установить на него всё необходимое оборудование.

Шаг #3. Как сделать алюминиевый флюгер

Флюгерную конструкцию, на одном конце которой место под автомобильный генератор с винтом, а на другом — место под «хвостовик», рекомендуется делать из лёгкого прочного материала.

Например, алюминиевая труба прямоугольного профиля подошла бы под основание в самый раз. В качестве крепежа генератора к профильной трубе удобнее применить хомуты из мягкой металлической ленты (лучше нержавеющей).



Пример возможного крепления корпуса генератора на профильной трубе флюгера. Здесь используется металлическая рама с передним и задним кронштейнами под болтовое соединение

Хвост флюгера можно соорудить из того же алюминиевого листа и закрепить его к профильной трубе уголками. В точке центра тяжести, на профильной трубе, необходимо укрепить металлический штырь из нержавейки.

Эта деталь – в виде длинного болта (250-300 мм), диаметром около 30 мм (рассчитывается), проходит поперёк сквозь тело профильной алюминиевой трубы и закрепляется снизу гайкой. Поверх гайки ставится контргайка.

Диаметр резьбы болта должен быть чуть меньше внутреннего диаметра колец подшипников, запрессованных в трубе-мачте. В центре болта, по его оси, просверливается отверстие 7-10 мм. Сквозь это отверстие будет пропускаться электрический кабель от генератора и по трубе уходить вниз к месту подключения.

Шаг #4. Установка и подключение ветрогенератора

После всех описанных приготовлений (обязательно в условиях безветренной погоды) приступают к установке:

На этом конструирование ветрового генератора можно считать завершённым. Однако есть ещё масса отдельных деталей процесса, с которыми придётся столкнуться в период применения устройства.



Структурная схема полноценной ветряной установки: 1 – ветряк, 2 – конвертер заряда АКБ; 3 – аккумулятор автомобильный; 4 – инвертор 24/220; 5,6 – выходы напряжений 220В и 24В

Эти детали связаны уже с автоматикой, регулирующей накопление и распределение энергии. Такие устройства как контроллер заряда, инвертор тока и прочие, являются обязательными компонентами ветровых генераторов.

Фото-пример сборки ветряка по шагам

Рассмотрим пример сооружения ветряка на 24 В, собранного на базе автомобильного генератора. Самоделка начинает стабильно работать при силе ветра 5 м/с. В средне-ветреную погоду с порывами от 15 м/с установка поставляет от 8 до 11 А, в дни с сильными ветрами КПД увеличивается. Мощность не более 300 Вт.

На каждый полюс ротора ( их 24 штуки) устанавливаем и заливаем эпоксидной смолой по два магнита размером 20×5×5мм

Старый автомобильный генератор перед сборкой самоделки надо очистить от ржавчины. Желательно покрасить краской по металлу, исключающей дальнейшее ржавление

Статор перед последующей сборкой перематываем. Для перемотки используем провод сечением 0,56 мм. Наматываем в зависимости от числа катушек, число витков от 33 до 39

Закрепляем подготовленный к работе генератор на выполненной из профиля металлической раме. Ее тоже нужно покрасить

По размеру генератора вырезаем треугольную алюминиевую деталь, к которой будут крепиться лопасти. В примере их вырезали из остатков канализационной ПВХ трубы

Для защиты деталей генератора от воздействия внешней среды заливаем перемотанный статор эпоксидной смолой. После застывания окрашен краской, оберегающей от появления ржавчины

Традиционное для автогенераторов соединение, выполненное в форме треугольника, переделываем в звезду. От нее отводим три проводника к диодному мосту

Собираем самодельный ветрогенератор. К его валу, выполненному из металлической трубы, крепим подшипники и деталь, на которой болтами зафиксированы лопасти

Шаг 1: Заливка магнитов на роторе эпоксидкой

Шаг 2: Чистка ротора от ржавчины и окислов

Шаг 3: Перемотка статора автомобильного генератора

Шаг 4: Фиксация генератора на металлической раме

Шаг 5: Подготовка лопастей с крепежной деталью

Шаг 6: Обработка деталей генератора

Шаг 7: Соединение проводки звездой

Шаг 8: Установка лопастей самодельного ветряка

Фактически вся работа выполнена, остается соединить разрозненные компоненты полезной в быту установки:

Шаг 9: Установка контроллера ветрогенератора

Шаг 10: Устройство хвостовой части ветряка

Шаг 11: Крепление лопасти к хвосту

Шаг 12: Проверка работоспособности ветряка

Сооруженная своими руками установка развивает 24 В, применять ее можно для зарядки аккумуляторов мобильной техники и для поставки энергии в линии освещения с энергосберегающими светильниками.

Оцените автора
Спектр Ремонта